

ISO 9001:2000,BS EN 9001 APPROVED BY BVQI

叉形电流表

(实际尺寸)

(€ @ 10 AC/DC 0.1~100.0A

开放式传感器 可实现AC/DC电流测试

真有效值测试中,适用于变形波 电压感知功能可以通电时进行检测 直流电流量程中有零调节功能,只需按一次可调整为零 自动关机功能 数据保留功能(ACA/DCA) 低消耗电路可节省电池

符合国际安全规格IEC61010-1CAT. III 300V标准

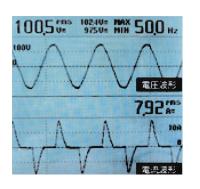
叉形电流表

MODEL 2300R

高质量高品质是我们的一贯传统 Quality and reliability is our tradition

● 布局展示:

KEW 2300 技术参数:


_		
氾度 围	电流测定	ACA 0~100A ±2.0%rdg ±5dgt(50/60Hz) DCA 0~100A ±2.0%rdg ±5dgt
	电压感知机能 (NCV)*1	NCV:不接触电路判断电压的存在与否(普通线、裸线兼用) 80V以上电压检测是," HI"显示灯闪烁和蜂鸣断续音
	被测定导体径	最大 10mm
峰值系数*2		2.5
最	大表示	1049计数
安	全 规 格	IEC61010-1CAT. 300V污染度2
使用电池		R03(1.5V)×2 自动关机约10分钟,持续测量时间AC A约46小时,DC A约52小时
外	形尺寸	161(L) × 40(W) × 30(D)mm
重	量	约110g(含电池)
附	件	9113(便携式外箱) 使用说明书 干电池R03(1.5V)×2

*1 电压感知功能(NCV: Non Contract Voltage) 不直接接触电线、电极等可确认有无电压的功能。 (对电缆、插座、熔断器、电路遮断器、耐电盘等 可安全简单地确认AC电压的存在与否)。

*2 峰值系数

峰值与有效值的比值,表示动态量程的广阔范围。 峰值系数是波形极正的正弦波值为1.41, 此数值以外的值表示波形不正。

真有效值测试 (RMS:Root Mean Square)

图例:晶闸管控制发动机负荷测试,真有效值测试仪显示7.9A,平均值测试仪显示6.5A。

电压感知功能

将电压施加于电缆、插座等,该电压会相应产生电场。本产品根据感知该电场,可确认AC电压存在与否。正确名称应为电场感知型测试器,但由于该名称不顺口,故称为非接触电压感知功能。一般的检测器均须接触有极电压(接点及端口)后感知电压。针对于此,考虑到使用者的安全问题,为达到既能不接触电压,又能感知电压的目的,而开发了本仪器。